Enhanced proton translocating pyrophosphatase activity improves nitrogen use efficiency in Romaine lettuce.
نویسندگان
چکیده
Plant nitrate (NO3(-)) acquisition depends on the combined activities of root high- and low-affinity NO3(-) transporters and the proton gradient generated by the plasma membrane H(+)-ATPase. These processes are coordinated with photosynthesis and the carbon status of the plant. Here, we present the characterization of romaine lettuce (Lactuca sativa 'Conquistador') plants engineered to overexpress an intragenic gain-of-function allele of the type I proton translocating pyrophosphatase (H(+)-PPase) of Arabidopsis (Arabidopsis thaliana). The proton-pumping and inorganic pyrophosphate hydrolytic activities of these plants are augmented compared with control plants. Immunohistochemical data show a conspicuous increase in H(+)-PPase protein abundance at the vasculature of the transgenic plants. Transgenic plants displayed an enhanced rhizosphere acidification capacity consistent with the augmented plasma membrane H(+)-ATPase proton transport values, and ATP hydrolytic capacities evaluated in vitro. These transgenic lines outperform control plants when challenged with NO3(-) limitations in laboratory, greenhouse, and field scenarios. Furthermore, we report the characterization of a lettuce LsNRT2.1 gene that is constitutive up-regulated in the transgenic plants. Of note, the expression of the LsNRT2.1 gene in control plants is regulated by NO3(-) and sugars. Enhanced accumulation of (15)N-labeled fertilizer by transgenic lettuce compared with control plants was observed in greenhouse experiments. A negative correlation between the level of root soluble sugars and biomass is consistent with the strong root growth that characterizes these transgenic plants.
منابع مشابه
Contribution of PPi-Hydrolyzing Function of Vacuolar H+-Pyrophosphatase in Vegetative Growth of Arabidopsis: Evidenced by Expression of Uncoupling Mutated Enzymes
The vacuolar-type H(+)-pyrophosphatase (H(+)-PPase) catalyzes a coupled reaction of pyrophosphate (PPi) hydrolysis and active proton translocation across the tonoplast. Overexpression of H(+)-PPase improves growth in various plant species, and loss-of-function mutants (fugu5s) of H(+)-PPase in Arabidopsis thaliana have post-germinative developmental defects. Here, to further clarify the physiol...
متن کاملMembrane-bound proton-translocating pyrophosphatase of Syntrophus gentianae, a syntrophically benzoate-degrading fermenting bacterium.
Syntrophus gentianae is a strictly anaerobic bacterium which ferments benzoate to acetate, CO2 and H2 in the presence of hydrogen-utilizing partner bacteria. Benzoate is activated by a benzoyl CoA ligase enzyme which forms AMP and pyrophosphate as coproducts. Pyrophosphatase activity was found to be largely membrane bound. Pyrophosphate hydrolysis was associated with proton translocation across...
متن کاملMolecular cloning of vacuolar H(+)-pyrophosphatase and its developmental expression in growing hypocotyl of mung bean.
Vacuolar proton-translocating inorganic pyrophosphatase and H(+)-ATPase acidify the vacuoles and power the vacuolar secondary active transport systems in plants. Developmental changes in the transcription of the pyrophosphatase in growing hypocotyls of mung bean (Vigna radiata) were investigated. The cDNA clone for the mung bean enzyme contains an uninterrupted open reading frame of 2298 bp, co...
متن کاملA simple technique for the establishment of nitrogenase in soybean callus culture.
A nitrogen-fixing association can be readily established in vitro between Rhizobium and cultured soybean root cells. Plant cells are grown as a thin callus on the surface of solid defined medium containing low levels of inorganic nitrogen and inoculated with bacteria during the active phase of growth. Acetylene reduction activities up to 275 nmoles ethylene/hr.g dry weight of cells have been re...
متن کاملProton pumping inorganic pyrophosphatase of endoplasmic reticulum-enriched vesicles from etiolated mung bean seedlings.
Endoplasmic reticulum (ER)-enriched vesicles from etiolated hypocotyls of mung bean seedlings (Vigna radiata) were successfully isolated using Ficoll gradient and two-phase (polyethylene glycol-dextran) partition. The ER-enriched vesicles contained inorganic pyrophosphate (PPi) hydrolysis and its associated proton translocating activities. Antiserum prepared against vacuolar H+-pyrophosphatase ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 161 3 شماره
صفحات -
تاریخ انتشار 2013